
TensorFlow w/XLA:
TensorFlow, Compiled!
Expressiveness with performance

Jeff Dean
Google Brain team
g.co/brain
presenting work done by the XLA team and Google Brain team

Pre-release Documentation (or search GitHub repository for ‘XLA’): 
https://www.tensorflow.org/versions/master/resources/xla_prerelease.html

http://g.co/brain
http://g.co/brain
https://www.tensorflow.org/versions/master/resources/xla_prerelease.html
https://www.tensorflow.org/versions/master/resources/xla_prerelease.html


It takes a village to raise a 
compiler.
- Ancient proverb



Why Did We Build TensorFlow?
Wanted system that was flexible, scalable, and production-ready

DistBelief, our first system, was good on two of these, but lacked flexibility

Most existing open-source packages were also good on 2 of 3 but not all 3



TensorFlow Goals
Establish common platform for expressing machine learning ideas and systems

Make this platform the best in the world for both research and production use

Open source it so that it becomes a platform for everyone, not just Google



Facts and Figures
Launched on Nov. 9, 2015

Reasonably fully-featured:
auto differentiation, queues, control flow, fairly comprehensive set of ops, ...

Tutorials made system accessible

Out-of-the-box support for CPUs, GPUs, multiple devices, multiple platforms 



Some Stats
500+ contributors, most of them outside Google

11,000+ commits since Nov, 2015

1M+ binary downloads

#16 most popular repository on GitHub by stars

Used in ML classes at quite a few universities now:
Toronto, Berkeley, Stanford, …

Many companies/organizations using TensorFlow:
Google, DeepMind, OpenAI, Twitter, Snapchat, Airbus, Uber, ... 



Flexible
Expressive
Extensible

TensorFlow Strengths



Just-In-Time Compilation
via XLA, "Accelerated Linear Algebra" compiler

0x00000000      movq    (%rdx), %rax
0x00000003      vmovaps (%rax), %xmm0
0x00000007      vmulps  %xmm0, %xmm0, %xmm0
0x0000000b      vmovaps %xmm0, (%rdi)

...

TF graphs go in,

Optimized & specialized 
assembly comes out.

Let's explain that!



Demo:
Inspect JIT code in 
TensorFlow
iPython shell

XLA:CPU

XLA:GPU

http://www.youtube.com/watch?v=ZYlVnH08DJc


Program built at runtime
Low-overhead compilation

Dim variables (e.g. batch size) can bind very late
Prototype w/freedom of TF development

What's JIT all about?



TF-Level Block Diagram
TensorFlow

Existing TensorFlow Core

TF CPU Ops TF GPU Ops TF TPU Ops

XLA:CPU XLA:GPU XLA:TPU

XLA

TF Auto-JIT

Target graphs explicitly
at an XLA "device"



TF-Level Block Diagram

XLA:CPU XLA:GPU XLA:TPU

TensorFlow

XLA

Existing TensorFlow Core TF Auto-JIT

Or let TF find
JIT-compilable op clusters

for you!

TF CPU Ops TF GPU Ops TF TPU Ops



TF-Level Block Diagram

XLA:CPU XLA:GPU XLA:TPU

TensorFlow

XLA

Existing TensorFlow Core TF Auto-JIT

Things that don't compile 
can still be placed on 

existing devices

TF CPU Ops TF GPU Ops TF TPU Ops



Complementary Attributes!

Interpreted
Dynamic
Stateful

"Black-Box" ModularExtensible

Flexible

Expressive

Primitives

Compiled

Static
Pure

Think & write this way... But get optimization 
benefits of these!



What has us excited?
Server-side speedups

XLA's JIT compilation and specialization
Significant performance wins
SyntaxNet latency reductions: 200µs ⇒ 5µs (extreme case)



XLA's Ahead-of-Time compilation
Turn models to executables

Eliminates much of TensorFlow runtime
Cross-compile for ARM, PPC, x86

LSTM model for mobile: ~1MB ⇒ 10s of KBs

What has us excited?
Mobile footprint reductions



XLA's High-Level Optimizer
Reusable toolkit of global optimizations
Layout (e.g. dim order, cache-line padding) is parameterized
Mix & match platform-agnostic & target specific passes

What has us excited?
Whole-Program Analysis made easy



Wins accumulating day by day, not everything is faster yet
Haven't devoted equal time to all platforms

With the community we believe we could do much more!
Open source release in O(1 month)

Caveats?
It's still early days!

Best time to start the dialogue :-)
Not all TensorFlow ops compile

Note: some won't compile by design
(e.g. DynamicStitch)



(That being said...)

Benchmark Results
TF:XLA:GPU vs TF:GPU



Increasing complexity from "toy demo" to "large, complex neural 
nets"...

XLA gives 30% speedup

XLA gives 20% speedup



Ah, more real!
LSTMs have element-wise ops the compiler "fuses"
More on that later...

XLA gives 50% speedup

XLA gives 80% speedup



Very real: Neural Machine Translation! https://goo.gl/SzbQCS
Full-model runs also indicate ~20% speedup

XLA gives 20% speedup

XLA gives 20% speedup

https://goo.gl/SzbQCS


New compiler optimizations tend to benefit across many models

Yay!

XLA gives 20% speedup



Compilation benefits
Specializes the code for your computation

Eliminates op dispatch overhead
Fuses ops: avoids round trips to memory

Analyzes buffers: reuses memory, updates in-place
Unrolls, vectorizes via known dimensions

↓ executable size: generate what you need!



Under the Hood



XLA program =
static, decomposed TF ops
Math-looking primitive ops
Make macro-ops by composition
Supports many neural net definitions



Classic TensorFlow example

MatMul

Add Relu

biases

weights

examples

labels

Softmax
Math!

We get it.



Classic TensorFlow example

MatMul

Add Max(0.0, _)

biases

weights

examples

labels

Softmax

Mathier!Mathier!



Classic TensorFlow example

MatMul

Add Max(0.0, _)

biases

weights

examples

labels

Softmax

Aha,
one of these things is 
not like the others...



A key question:
Why write every new macro-op in C++?
Why can't we just compose them out of existing TF ops?

An answer: you don't want to pay a performance penalty.

But, what if op composition had the performance of C++?



The kind of stuff C++ SoftMax code has inside...
auto weighted = Dot(input, weights);
auto weighted_sum = Add(weighted, biases, /*broadcast=*/{1});
auto max_activation = Reduce(
    weighted_sum, Constant(MinValue(F32)), Max, /*reduce_dims=*/{1});
auto activations_normalized =
   Exp(Sub(weighted_sum, max_activation, /*broadcast=*/{0}));
auto activations_sum =
   Reduce(activations_normalized, Constant(0.0f), Add, /*reduce_dims=*/{1});
auto predicted = Div(activations_normalized,
                     activations_sum, /*broadcast=*/{0});

primitive operation composition
⇒ fused & optimized

composite kernel

TensorFlow:XLA bridge does
built-in op decomposition

for you



Automatic Operation Fusion
XLA composes & specializes primitive operations

Note: this is all expressible in TensorFlow
Not done due to performance concerns
XLA removes the performance concern

Avoids combinatorial explosion of op fusions
(e.g. for custom LSTM cell) macro-ops * primitives *

dim sizes * backends * devices!



XLA APIs
(never seen by normal TensorFlow users)



StreamExecutor

Code Cache TransferManagerIn-Memory
Executable
Object

Assembled code 
generation

XLA Block Diagram
TensorFlow

ComputationBuilder API Executor API

High-Level Optimizer (HLO): 
Target Independent

Builds "HLO IR"

Low-Level Optimizer (LLO): 
Target Specific

Lowering to "LLO IR"



XLA is Designed for Reuse
Retargetability & pragmatism

Pluggable backends
HLO pass "toolkit"

Can emit calls to libraries like BLAS or CuDNN
Either use LLVM

Or Bring-Your-Own Low Level Optimizer



Minimal XLA backend:
An LLVM pipeline
A StreamExecutor plugin



StreamExecutor

Code Cache TransferManagerIn-Memory
Executable
Object

XLA
TensorFlow

ComputationBuilder API Executor API

High-Level Optimizer (HLO)

Let's instantiate for different 
platforms!

Low-Level Optimizer (LLO)



Code Cache TransferManagerIn-Memory
Executable
Object

XLA:CPU
TensorFlow

ComputationBuilder API Executor API

High-Level Optimizer (HLO)

LLVM:$TARGET

StreamExecutor:Host

In-memory {ARM, PPC, x86} JIT blob



Code Cache TransferManagerIn-Memory
Executable
Object

XLA:GPU:CUDA
TensorFlow

ComputationBuilder API Executor API

High-Level Optimizer (HLO)

LLVM:NVPTX

StreamExecutor:CUDA

In-memory kernels & library calls



Code Cache TransferManagerIn-Memory
Executable
Object

XLA:GPU:OpenCL
TensorFlow

ComputationBuilder API Executor API

High-Level Optimizer (HLO)

LLVM:$TARGET

StreamExecutor:OpenCL

In-memory kernels & library calls



{CPU, GPU} HLO pipeline; one slide each



cpu_compiler.cc
HloPassPipeline pipeline("CPU");
pipeline.AddPass<Inliner>()
  .AddPass<ConvCanonicalization>()
  .AddPass<HloPassFix<ReshapeMover>>()
  .AddPass<HloSubcomputationUnification>()
  .AddPass<HloCSE>(/*is_layout_sensitive=*/false)
  .AddPass<CpuInstructionFusion>()
  .AddPass<CpuLayoutAssignment>();
  .AddPass<HloPassFix<AlgebraicSimplifier>>(
     /*is_layout_sensitive=*/true, /*add_bitcasts=*/true)
  .AddPass<HloCSE>(/*is_layout_sensitive=*/true)
  .AddPass<CopyInsertion>()
  .AddPass<ParallelizationPreparation>();
pipeline.Run(hlo_module);

Mixes
target-independent passes

& dependent passes
in a pipeline



gpu_compiler.cc
HloPassPipeline pipeline("GPU");
pipeline.AddPass<ConvolutionFolding>()
  .AddPass<ReshapeMover>().AddPass<TransposeFolding>()
  .AddPass<HloSubcomputationUnification>()
  .AddPass<HloCSE>(/*is_layout_sensitive=*/false)
  .AddPass<HloPassFix<ReduceFactorizer>>(
    device_desc.threads_per_core_limit() * device_desc.core_count())
  .AddPass<HloPassFix<AlgebraicSimplifier>>(false)
  .AddPass<ReduceSplitter>()
  .AddPass<GpuInstructionFusion>(/*may_duplicate=*/false)
  .AddPass<PadInsertion>().AddPass<GpuLayoutAssignment>()
  .AddPass<HloPassFix<AlgebraicSimplifier>>(
    /*is_layout_sensitive=*/true, /*add_bitcasts=*/true)
  .AddPass<HloCSE>(/*is_layout_sensitive=*/true).AddPass<GpuCopyInsertion>();
pipeline.Run(hlo_module);

Passes are reused
across targets

Specialize/optimize for
runtime-observed device

Not shown: buffer assignment 
& stream assignment too!



JIT compilation when prototyping
Compilation caching as you scale

AoT compilation for mobile/embedded & latency
Control & observe static properties of the program

XLA: Prototype to Deployment
Potential at various phases of the lifecycle

E.g. peak memory usage



ALWAYS MORE PERFORMANCE!
Multi-device-targeting compilation

Cross-layer optimizations
Sparse operation support

Feedback-directed opt & auto-tuning

Future Work



Performance will improve across the board
Write the code naturally, let compiler deal with performance
Modular infrastructure
Whole-program optimization
Mix compilation & library techniques
Easy to target wide variety of different kinds of HW

Conclusions:
XLA release for TensorFlow is coming soon!

Pre-release Documentation (or search TensorFlow GitHub repository for ‘XLA’): 
https://www.tensorflow.org/versions/master/resources/xla_prerelease.html

https://www.tensorflow.org/versions/master/resources/xla_prerelease.html
https://www.tensorflow.org/versions/master/resources/xla_prerelease.html


Backup slides in case internet 
doesn’t work for video








