TensorFlow w/XLA: TensorFlow, Compiled! Expressiveness with performance

Pre-release Documentation (or search GitHub repository for 'XLA'): https://www.tensorflow.org/versions/master/resources/xla_prerelease.html

Jeff Dean Google Brain team <u>g.co/brain</u> presenting work done by the XLA team and Google Brain team

It takes a village to raise a compiler. - Ancient proverb

Why Did We Build TensorFlow?

- Wanted system that was flexible, scalable, and production-ready
- DistBelief, our first system, was good on two of these, but lacked flexibility
- Most existing open-source packages were also good on 2 of 3 but not all 3

TensorFlow Goals

- Establish common platform for expressing machine learning ideas and systems
- Make this platform the best in the world for both research and production use
- Open source it so that it becomes a platform for everyone, not just Google

Facts and Figures

- Launched on Nov. 9, 2015
- Reasonably fully-featured:
- Tutorials made system accessible
- Out-of-the-box support for CPUs, GPUs, multiple devices, multiple platforms

auto differentiation, queues, control flow, fairly comprehensive set of ops, ...

Some Stats

- 500+ contributors, most of them outside Google
- 11,000+ commits since Nov, 2015
- 1M+ binary downloads
- #16 most popular repository on GitHub by stars
- Used in ML classes at quite a few universities now: Toronto, Berkeley, Stanford, ...
- Many companies/organizations using TensorFlow: Google, DeepMind, OpenAI, Twitter, Snapchat, Airbus, Uber, ...

TensorFlow Strengths Flexible Expressive

Extensible

Just-In-Time Compilation via XLA, "Accelerated Linear Algebra" compiler

Optimized & specialized assembly comes out.

movq vmovaps %xmm0, (%rdi)

(%rdx), %rax vmovaps (%rax), %xmm0 vmulps %xmm0, %xmm0, %xmm0

Let's explain that!

Demo: Inspect **JIT code** in TensorFlow **iPython shell**

XLA:CPU

XLA:GPU

EIISULT In [1]: %cpaste Pasting code: enter '---' alone on the line to stop or use Ctrl-D. :with tf.Session() as sess: x = tf.placeholder(tf.float32, [4]) with tf.device("device:XLA_CPU:8"): $\mathbf{U} = \mathbf{X} = \mathbf{X}$ result = sess.run(y, {x: [1.5, 8.5, -8.5, -1.5]))

What's JT all about?

- Program built at runtime
- Low-overhead compilation Dim variables (e.g. batch size) can bind very late Prototype w/freedom of TF development

TF-Level Block Diagram

Existing TensorFlow Core

TF CPU Ops TF GPU Ops TF TPU Ops

TF-Level Block Diagram

Existing TensorFlow Core

TF CPU Ops TF GPU Ops TF TPU Ops

TF-Level Block Diagram Things that don't compile can still be placed on existing devices

Existing TensorFlow Core

TF CPU Ops TF GPU Ops TF TPU Ops

Complementary Attributes!

Interpreted Dynamic Stateful "Black-Box" Modular

Compiled

Static

Pure

Primitives

But get optimization benefits of these!

What has us excited? Server-side speedups

XLA's JIT compilation and specialization Significant performance wins SyntaxNet latency reductions: $200\mu s \Rightarrow 5\mu s$ (extreme case)

What has us excited? Mobile footprint reductions

XLA's Ahead-of-Time compilation Turn models to executables Eliminates much of TensorFlow runtime Cross-compile for ARM, PPC, x86 LSTM model for mobile: $\sim 1MB \Rightarrow 10s \text{ of } KBs$

What has us excited? Whole-Program Analysis made easy

XLA's High-Level Optimizer Reusable toolkit of global optimizations Layout (e.g. dim order, cache-line padding) is parameterized Mix & match platform-agnostic & target specific passes

Caveats? It's still early days! Not all TensorFlow ops compile

- With the community we believe we could do much more!
 - Open source release in O(1 month)

Note: some won't compile by design (e.g. DynamicStitch)

- Best time to start the dialogue :-)
- Wins accumulating day by day, not everything is faster yet
 - Haven't devoted equal time to all platforms

(That being said...) Benchmark Results TF:XLA:GPU vs TF:GPU

Increasing complexity from "toy demo" to "large, complex neural nets"...

Ah, more real! LSTMs have element-wise ops the compiler "fuses" More on that later...

XLA gives 50% speedup

- gpu_forward_backward
- xla_gpu_forward_backward

1

-

....

- gpu_forward
- xla_gpu_forward

XLA gives 80% speedup

Very real: Neural Machine Translation! https://goo.gl/SzbQCS Full-model runs also indicate ~20% speedup

New compiler optimizations tend to benefit across many models

Compilation benefits Specializes the code for your computation

- Eliminates op dispatch overhead
- Fuses ops: avoids round trips to memory
- Analyzes buffers: reuses memory, updates in-place
 - Unrolls, vectorizes via known dimensions
 - ↓ executable size: generate what you need!

Under the Hood

XLA program = static, decomposed TF ops

Math-looking primitive ops Make macro-ops by composition Supports many neural net definitions

Classic TensorFlow example

Classic TensorFlow example

A key question: Why write every new macro-op in C++? Why can't we just compose them out of existing TF ops?

An answer: you don't want to pay a performance penalty.

But, what if op composition had the performance of C++?

The kind of stuff C++ SoftMax code has inside...

auto weighted = Dot(input, weights); auto weighted_sum = Add(weighted, biases, /*broadcast=*/{1}); auto max_activation = Reduce(weighted_sum, Constant(MinValue(F32)), Max, /*reduce_dims=*/{1}); auto activations_normalized = Exp(Sub(weighted_sum, max_activation, /*broadcast=*/{0})); auto activations_sum = Reduce(activations_normalized, Constant(0.0f), Add, /*reduce_dims=*/{1}); auto predicted = Div(activations_normalized, activations_sum, /*broadcast=*/{0});

TensorFlow:XLA bridge does built-in op decomposition for you

primitive operation composition \Rightarrow fused & optimized composite kernel

Automatic Operation Fusion XLA composes & specializes primitive operations

- Note: this is all expressible in TensorFlow Not done due to performance concerns XLA removes the performance concern Avoids combinatorial explosion of op fusions

(e.g. for custom LSTM cell)

macro-ops * primitives * dim sizes * backends * devices!

XLA APIS (never seen by normal TensorFlow users)

XLA is Designed for Reuse Retargetability & pragmatism

- Pluggable backends HLO pass "toolkit"
- Can emit calls to libraries like BLAS or CuDNN
 - Either use LLVM
 - Or Bring-Your-Own Low Level Optimizer

Minimal XLA backend: An LLVM pipeline A StreamExecutor plugin

Let's instantiate for different platforms!

XLA:CPU

TensorFlow

In-memory kernels & library calls

Executor API

Code Cache

TransferManager

StreamExecutor:CUDA

In-memory kernels & library calls

Code Cache

StreamExecutor:OpenCL

{CPU, GPU} HLO pipeline; one slide each

cpu_compiler.cc

HloPassPipeline pipeline("CPU"); pipeline.AddPass<Inliner>()

.AddPass<ConvCanonicalization>()

.AddPass<HloPassFix<ReshapeMover>>()

.AddPass<HloSubcomputationUnification ()

.AddPass<HloCSE>(/*is_layout_sensit/ve=*/false)

.AddPass<CpuInstructionFusion>()

.AddPass<CpuLayoutAssignment>();

.AddPass<HloPassFix<AlgebraicSimplifier>>(/*is_layout_sensitive=*/true, /*add_bitcasts=*/true) .AddPass<HloCSE>(/*is_layout_sensitive=*/true)

.AddPass<CopyInsertion>()

.AddPass<ParallelizationPreparation>(); pipeline.Run(hlo_module);

Mixes target-independent passes & dependent passes in a pipeline

gpu_compiler.cc

HloPassPipeline pipeline("GPU");

- pipeline.AddPass<ConvolutionFolding
 - .AddPass<ReshapeMover>().AddPass____ansposeFo
 - .AddPass<HloSubcomputationUnification>()
 - .AddPass<HloCSE>(/*is_layout_sensitive=//false)
 - .AddPass<HloPassFix<ReduceFactorizer>>>(
 - device_desc.threads_per_core_limit() * device_desc.core_count())
 - .AddPass<HloPassFix<AlgebraicSimplifier>>(false)
 - .AddPass<ReduceSplitter>()
 - .AddPass<GpuInstructionFusion>(/*may_duplicate=*/false)
 - .AddPass<PadInsertion>().AddPass<GpuLayoutAssignment>()
 - .AddPass<HloPassFix<AlgebraicSimplifier>>(

/*is_layout_sensitive=*/true, /*add_bitcasts=*/true) pipeline.Run(hlo_module);

Passes are reused across targets

⊿ing>()

Specialize/optimize for runtime-observed device

Not shown: buffer assignment & stream assignment too!

.AddPass<HloCSE>(/*is_layout_sensitive=*/true).AddPass<GpuCopyInsertion>();

XLA: Prototype to Deployment Potential at various phases of the lifecycle **JIT compilation** when prototyping **Compilation caching** as you scale AoT compilation for mobile/embedded & latency

E.g. peak memory usage

- Control & observe static properties of the program

Future Work

ALWAYS MORE PERFORMANCE! Multi-device-targeting compilation **Cross-layer optimizations** Sparse operation support Feedback-directed opt & auto-tuning

Conclusions: XLA release for TensorFlow is coming **soon**! Performance will improve across the board Write the code naturally, let compiler deal with performance Modular infrastructure Whole-program optimization Mix compilation & library techniques Easy to target wide variety of different kinds of HW Pre-release Documentation (or search TensorFlow GitHub repository for 'XLA'): https://www.tensorflow.org/versions/master/resources/xla_prerelease.html

Backup slides in case internet doesn't work for video

Demo: Inspect JIT code in **TensorFlow** iPython shell

XLA:CPU

XLA: GPU

teary gleary: /geogle/src/cloud/teary/tf-shetLigoogle3 \$ shell --xla_dump_assembly=true TensorFlow shell In [1]: %cpaste :with tf.Session() as sess: $\mathbf{U} = \mathbf{X} * \mathbf{X}$ cluster_3.v4: 0×00000000 movq 0×00000003 0×00000007 0×0000000b vmovaps %xmm0, (%rdi) 0×0000000f retq

In [2]:

shell


```
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
   x = tf.placeholder(tf.float32, [4])
   with tf.device("device:XLA_CPU:0"):
  result = sess.run(y, {x: [1.5, 0.5, -0.5, -1.5]})
                        (%rdx), %rax
                vmovaps (%rax), %xmm0
                vmulps %×mm0, %×mm0, %×mm0
```


Demo: Inspect **JIT code** in TensorFlow iPython shell

XLA:CPU

XLA: GPU

shell harygleary:/geogle/sry/cloud/leary/#-shell/google3 In [1]: %cpaste :with tf.Session() as sess: y = x * xcluster_3.v4: 0×00000000 movq 0×00000003 0×00000007 0×0000000b 0x0000000f retq In [2]: %cpaste :with tf.Session() as sess: $\mathbf{u} = \mathbf{x} \mathbf{*} \mathbf{x}$ 0:20 / 0:26

```
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
  x = tf.placeholder(tf.float32, [4])
   with tf.device("device:XLA_CPU:0"):
  result = sess.run(y, {x: [1.5, 0.5, -0.5, -1.5]})
                       (%rdx), %rax
                vmovaps (%rax), %xmm0
                vmulps %xmm0, %xmm0, %xmm0
                vmovaps %xmm0, (%rdi)
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
  x = tf.placeholder(tf.float32, [4])
   with tf.device("device:XLA_GPU:0"):
```

result = sess.run(y, {x: [1.5, 0.5, -0.5, -1.5]})

Demo: Inspect JIT code in TensorFlow iPython shell

XLA:CPU

XLA:GPU

shell learygleary; /geogle/ww.icloud/leary/tF-shell/google3 .target sm_35 address_size 64 // .globl visible .entry _multiply(maxntid 4, 1, 1 .reg .pred .reg .f32 .reg .b32 .reg .b64 mov.u32 %r2, %ctaid.x; mov.u32 %r3, %tid.x; sh1.b32 add.s32 setp.gt.u32 @%p1 bra

0:25 / 0:26

_multiply .param .u64 _multiply_param_0, .param .u64 _multiply_param_1, .param .u64 _multiply_param_2, .param .u64 _multiply_param_3 %p<2>; %f<3>; %r<5>; %rd<8>; %r4, %r2, 2; %r1, %r4, %r3; %p1, %r1, 3; LBB0_2;