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The very first computer science PhD dissertation introduced forward
accumulation mode automatic differentiation.
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Wengert (1964)




Robert Edwin Wengert. A simple automatic derivative evaluation program.
Communications of the ACM 7(8):463—4, Aug 1964.

A procedure for automatic evaluation of total/partial derivatives of arbitrary algebraic functions is
presented. The technique permits computation of numerical values of derivatives without
developing analytical expressions for the derivatives. The key to the method is the decomposition
of the given function, by introduction of intermediate variables, into a series of elementary
functional steps. A library of elementary function subroutines is provided for the automatic
evaluation and differentiation of these new variables. The final step in this process produces the
desired function’s derivative. The main feature of this approach is its simplicity. It can be used as a
quick-reaction tool where the derivation of analytical derivatives is laborious and also as a
debugging tool for programs which contain derivatives.
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R. E. Bellman, H. Kagiwada, and R. E. Kalaba (1965) Wengert’s numerical
method for partial derivatives, orbit determination and quasilinearization,
Communications of the ACM 8(4):231-2, April 1965,
doi:10.1145/363831.364886

In a recent article in the Communications of the ACM, R. Wengert suggested a technique
for machine evaluation of the partial derivatives of a function given in analytical form. In
solving nonlinear boundary-value problems using quasilinearization many partial
derivatives must be formed analytically and then evaluated numerically. Wengert’s
method appears very attractive from the programming viewpoint and permits the
treatment of large systems of differential equations which might not otherwise be
undertaken.



Automatic Differentiation:
a crash course



Automatic Differentiation (AD) mechanically calculates the
derivatives (Leibnitz, 1664; Newton, 1704) of functions
expressed as computer programs (Turing, 1936), at machine
precision (Konrad Zuse, 1941, Z3; Burks, Goldstine, and von
Neumann, 1946, §5.3, p14), and with complexity guarantees.
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Automatic Differentiation

Derivative of f : R" — R™ is m X n “Jacobian matrix” J.
AD, forward accumulation mode: Jv (Wengert, 1964)

AD, reverse accumulation mode: J7v (Speelpenning, 1980)
About a zillion other modes and tricks

Big Iron FORTRAN-77 valve-age implementations

Vibrant field with regular workshops, conferences, updated community portal
(http://autodiff.org)


http://autodiff.org

What is AD?

Automatic Differentiation
aka Algorithmic Differentiation
aka Computational Differentiation

AD Type I: A calculus for efficiently calculating derivatives of functions
specified by a set of equations.

AD Type II: A way of transforming a computer program implementing a
numeric function to also efficiently calculate some derivatives.

AD Type III: A computer program which automatically transforms an input
computer program specifying a numeric function into one that also
efficiently calculates derivatives.



Forward AD



Symmetric Truncated
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Symmetric Truncated
Taylor (1715) Expansion

L) (y) .

fata =L 1w et 0@
flx+ X€) =f(x) +f(x) Xe + O()

flx+ X e+ (’)(62)) = f(x) +f’(x)7€ + (’)(62)

flas X)) =fx) > f(x) X



flxp x)

f(x) > f'(x) x



Won’t anyone think of the ehildren types?

f:R>R
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Won’t anyone think of the ehildren types?
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Won’t anyone think of the ehildren types?

f:R-R
x, ¥, f(x):R
(x> x): DR +dual number (Clifford, 1873)
flx> X)) =fx)>f(x)x <type error!

7 : (R = R) — (DR — DR)

Tree X)) =fx) o f(x) ¥






Multifaceted Key to Forward AD!
Tfxe ¥) =fx) o f ()7



Multifaceted Key to Forward AD!
Tfxe ¥) =fx) o f ()7

Generalises beyond dual numbers (Clifford, 1873) and scalars:

f:R"— R" (multidimensional)
X, ¥ R (column vectors)
x> x : DR” (vector of dual numbers)
f(x) : R™" (Jacobian matrix, J)

7 : (R* - R") — (DR" — DR™) (Forward AD transform)



Multifaceted Key to Forward AD!
Tfxe ¥) =fx) o f ()7

Generalises beyond dual numbers (Clifford, 1873) and scalars:

f:R"— R" (multidimensional)
X, ¥ R (column vectors)
x> x : DR” (vector of dual numbers)
f(x) : R™" (Jacobian matrix, J)

7 : (R* - R") — (DR" — DR™) (Forward AD transform)

1. Compositional: 7(}” og) = 7]‘ o 7g
2. How to “lift” when f is a primop (elt of numeric basis)
3. What such “lifting” delivers when f is a defined function



Example: Application of TJtoa Primop
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v :z?sm u
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Example: Application of TJtoa Primop

Vv:=sinu

Nid=

—\ . —\
v :z?sm u

:’ inline & destructure =

v>7::7sin(u>7)

-7 . -7
vi> v :=sinul> (cosu) * u

V= sinu
e e
v = (cosu) * u



Simple Code

axb

C:
(v,w) := sincos u



Data Flow Graph




Data Flow Graph




Data Flow Graph




Transform Graph as Netlist, i.e., Code




AKA

» Forward Automatic Differentiation
» Forward Propagation

» Directional Derivative

» Push Forward

» Perturbation Analysis



Reverse AD

(aka backprop)



In the 1970s, tools for automated generation of adjoint codes (aka reverse
accumulation mode automatic differentiation, aka backpropagation) were
developed.

Type I: Geniuses transforming mathematical systems
(Gauss; Feynman (1939); Rozonoer and Pontryagin (1959))

Type II: Manual transformation of computational processes
(Bryson (1962); Werbos (1974); Le Cun (1985); Rumelhart, Hinton,
and Williams (1986))

Type III: Computer programs transform other computer programs
(Speelpenning (1980); LUSH; TAPENADE)

Type IV: First-class AD operators; closure
(STALINV; R°RS-AD; AUTOGRAD; DIFFSHARP)



Bert Speelpenning



' TUCDCS-R-80-1002 UILU-ENG 80 170:
C00-2383-0063

COMPILING FAST PARTIAL DERIVATIVES
OF FUNCTIONS GIVEN BY ALGORITHMS

by

Bert Speelpenning

lanuary 1980
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by arbitrary algorithms.

What is needed is a system as sketched in Figure 1.

- ->
X

———l .’X ‘1
Af text text | Af?
FORTRAN »| JAKE === | poRTRAN

> - I 8'* I
-
y = f(x) < 5%

Figure 1. Use of Jake

uch a system will accept the text of an algorithm Af, embodying y=f(x)



1.2, Major Results of this Research

A full solution to the problem of compiling'fast gradients has beer
btained. For the problem of compiling fast Jacobians of arbitrary
shape a partial solution has been found. This thesis describes a method
aind its implementation capable of producing algorithms Af’ that compute
“he gradient of a funétion f(xl,...,xn) in an amount of time equivalent
0 a constant number of function evaluations independent of n. The space

‘equirements of the algorithm Af’ are modest.



specialization occurring within Computer Science. The separation of
Numerical Analysis from Software is virtually complete and few people
care to bridge the gap between the areas. In Numerical Analysis, the
notion of programs that produce programs rather than numbers is largely
absent. For most numerical analysts the FORTRAN compiler is completely
transparent, as if Created on the same day as the computer. There 1is
little awareness of language processing as a software writing tool in
the sense of the products we have come to expect from places 1like Bell
Labs. Notable exceptions include user languages for ﬂhysical modeling
and for statistical computations. Conversely, people involved in
writing software tools may have a tendency to write only such software
tools thét aid in the writing of other software tools, and although this
opens fgscinating avenues of auto-catalysis, the real usefulness of
these tools must ultimately come from application to outside areas.
Tools are means to an end, not ends in themselves. What seems required
is not merely cooperation between software people and numerical analysts
but efforts by people with a certain minimal understanding and interest
in both areas. The effort invested in such hetero-catalysis could pay

off very handsomely.



Differential Geometry

(digression)



Tangent Space
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Cotangent Space
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Gradients & Reverse AD
are Dual
to Perturbations & Forward AD

‘aed ="bel (0): ' — o - R
where we let
b=fa fa—p
boF)=Tflavd) JTf:a—p
(0,))=Tfa Tfia=(8x(B—"a)
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Generalise: All Types Are Manifolds

» can be disconnected (e.g., union type)
» components can have varying dimensionality (e.g., list R)

» components can be zero dimensional (e.g., bool, enum, Z), in
which case tangent space is zero dimensional (void)



%
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even today, our tools for high-performance numeric computations do not
support automatic differentiation as a first-class citizen.
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Dominant AD technology for high-performance systems: preprocessors.



even today, our tools for high-performance numeric computations do not
support automatic differentiation as a first-class citizen.

Dominant AD technology for high-performance systems: preprocessors.

» very hard to apply in a nested fashion
» caller-derives API impedes modularity
» brittle and idiosyncratic.



Rosenblatt Wightman



nesting
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Uses of Nesting

Differential objective:
min |1 w) — will> + || (d/d0)f (6 w)] oy, —

Multilevel optimization (GANSs, learn-to-learn, etc. So hot!)
Optimizing game’s rules so rational players exhibit desired behaviour
Design optimization of “smart” devices, or devices involving PDEs
Hyperparameter optimization

Sensitivity/robustness analysis of processes involving AD



Generalise

. = .
Generalise 7, J to apply to all functions ...

7:(@%6)—%?%?)
T:(a—B) = (a—(Bx(B—"a))

... to all objects ...
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Technicalities!

» Tangent space is usually isomorphic to “IR holes” in primal space, since R is
our only non-zero-dimensional primitive type.

But not always (function types).

» Cotangent space is usually isomorphic to tangent space.

But not always (function types).

» Due to issues related to this, parts of reverse mode must be “lazy” even if
primal & forward AD computations are “eager”.



Functions Diff. Geom. Handles

arithmetic functions

functions over discrete spaces

functions over disconnected manifolds of differing dimensionality
higher-order functions over concrete linear functions

higher-order functions like map and compose (o)

higher-order functions like numeric-iterate-to-fixedpoint
(Feynman, 1939; Pineda, 1987; Almeida, 1987)

%
higher-order functions like 7 and J



delicate dance



fielded systems with first-class AD:

slow

rough edges



headroom for acceleration



research prototype compiler



robabilistic-— probabilistic-
particle Bend]markgambdafcalculus prolog backprop
FF FR RF RR FF FR RF RR F R F R F Fv R
'LAD STALINV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 [] 1.0(
'ORTRAN  ADIFOR 2.05 u u L] 5.44 u u u u u u L] 1551 335 u
TAPENADE 5.51 u u = 8.09 u u u u u u = 1497 597 6.8
. ADIC u u u [ u u u u u ] u [ 22775 5.61 ]
++ ADOL-C [ [ [ [] [ [ [ [ [ ] [ ] [ ] [] 12.16  5.79 32.71
CpPAD [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 54.74 ] 29.2¢
FADBAD++ 93.32 u u u 60.67 u u u u u u u 132.31 46.01 60.71
L MLTON 78.13 11127 4595 32,57 | 11407 14628 1227 1058 | 129.11 114.88 848.45 507.21 95.20 L] 39.9(
OCAML 217.03 415.64 352.06 26138 | 291.26 407.67 4239 5021 | 249.40 499.43 | 1260.83  1542.47 | 202.01 L] 156.9:
SML/NJ 153.01 226.84 270.63 192.13 | 271.84 299.76 25.66 23.89 | 234.62 258.53 | 2505.59 1501.17 | 181.93 u 102.8¢
JASKELL GHC 209.44 [ ] [ ] [] 247.57 [ ] [ ] [ ] [ ] [ ] [] [ u u u
CHEME ~ BIGLOO 627.78 85570 275.63  187.39 | 1004.85 1076.73 10524 89.23 | 983.12 1016.50 | 12832.92  7918.21 | 743.26 L] 360.07
CHICKEN 1453.06 2501.07 821.37 1360.00 | 2276.69 2964.02 22573 252.87 | 2324.54 3040.44 | 44891.04 24634.44 | 1626.73 [ ] 1125.2
GAMBIT 57894  879.39 356.47 260.98 | 958.73 1112.70 89.99  89.23 | 1033.46 1107.26 | 26077.48 14262.70 | 671.54 [ ] 379.63
IKARUS 266.54 38621 158.63  116.85 | 42475 527.57 4127 4234 | 49748 517.89 | 8474.57 4845.10 | 279.59 L] 165.1¢
LARCENY 964.18 1308.68 360.68  272.96 | 1565.53 1508.39 126.44 112.82 | 1658.27 1606.44 | 25411.62 14386.61 | 1203.34 L] 511.54
MIT SCHEME | 2025.23 3074.30 790.99  609.63 | 3501.21 3896.88 315.17 295.67 | 4130.88 3817.57 | 87772.39 49814.12 | 2446.33 [ ] 1113.0¢
MzC 1243.08 1944.00 740.31  557.45|2135.92 2434.05 194.49 187.53 | 2294.93 2346.13 | 57472.76  31784.38 | 1318.60 [ ] 754.47
MZSCHEME 1309.82 1926.77 71297 55528 | 2371.35 2690.64 224.61 219.29 | 2721.35 2625.21 | 60269.37 33135.06 | 1364.14 L] 772.1(
SCHEME->C 58220  743.00 270.83  208.38 | 910.19 913.66 8293 69.87 | 811.37 803.22 | 10605.32  5935.56 | 597.67 L] 280.93
SCMUTILS 4462.83 L] L] [ ] 7651.69 L] L] L] 7699.14 L] 83656.17 [ ] 5889.26 [ ] L]
STALIN 364.08 54773 399.39  295.00 | 543.68 690.64 6396 5293 | 956.47 1994.44 | 15048.42 16939.28 | 435.82 [ ] 281.27
Comparative ~ benchmark  results for the particle and saddle examples  (Siskind and  Pearlmutter, 2008a), the

probabilistic-lambda-calculus and probabilistic-prolog examples (Siskind, 2008) and an implementation of backpropagation
in neural networks using AD. Column labels are for AD modes and nesting: F for forward, Fv for forward-vector aka stacked tangents, RF for reverse-over-
forward, etc. All run times normalized relative to a unit run time for STALINV on the corresponding example except that run times for backprop-Fv are
normalized relative to a unit run time for STALINV on backprop-F. Pre-existing AD tools are named in blue, others are custom implementations. Key:
m not implemented but could implement, including FORTRAN, C, and C++; m not implemented in pre-existing AD tool; m problematic to implement. All
code available at http://www.bcl.hamilton.ie/~qobi/ad2016-benchmarks/.


http://www.bcl.hamilton.ie/~qobi/ad2016-benchmarks/
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particle Bend]markgambdafcalculus prolog backprop
FF P REF FR R — F - R F Fv R
'LAD STALINV 1.00 ., . Il BT 1. 1.00 100 =m 1.0(
‘ORTRAN  ADIFOR 2.05 u L] 1551 335 u
TAPENADE 5.51 u = 1497 597 6.8
, ADIC u u [ 22775 5.61 ]
++ ADOL-C [ u L] 12.16  5.79 32.71
CpPAD [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 54.74 [ ] 29.24
FADBAD++ - u u u 132.31 46.01 60.71
L MLTON 32,57 114.88 848.45 507.21 9520 = 39.9(
OCAML 499.43 | 1260.83  1542.47 | 202.01 ] 156.9:
SML/NJ 258.53 | 2505.59 1501.17 | 181.93 [ ] 102.8¢
JASKELL GHC [ ] [ ] [ ] [] [ []
CHEME  BIGLOO X . R3. 1016.50 | 12832.92  7918.21 | 743.26 L] 360.07
CHICKEN 76.69 2964.02 22573 252.87 | 2324.54 3040.44 | 44891.04 24634.44 | 1626.73 ] 1125.2¢
GAMBIT 958.73 111270  89.99  89.23 | 1033.46 1107.26 | 26077.48 14262.70 | 671.54 ] 379.6-
IKARUS 8474, 45.10 | 279.59 L] 165.1¢
LARCENY 4 62 86.61 | 1203.34 [] 511.5¢4
MIT SCHEME 77 49814.12 | 2446.33 ] 1113.0¢
MzC 574723 /84.38 | 1318.60 ] 754.47
MZSCHEME 602§0.37 35.06 | 1364.14 L] 772.1(
SCHEME->C 106f .56 | 597.67 ] 280.92
SCMUTILS R [ ] 7651.69 [ ] 7699.14 83656.17 ] 5889.26 ] [ ]
STALIN 364.08 547.73 399.39  295.00 | 543.68  690.64 956.47 15048.42 16939.28 | 435.82 ] 281.27
Comparative ~ benchmark  results  for and  Pearlmutter, 2008a), the

probabilistic-lambda-calculus a
in neural networks using AD. Column labels are for
forward, etc. All run times normalized relative to a
normalized relative to a unit run time for STALIN

2008) and an implementation of backpropagation
ard-vector aka stacked tangents, RF for reverse-over-
ple except that run times for backprop-Fv are
blue, others are custom implementations. Key:

m not implemented but could implement, including FORTRAN, C, and C++; m not implemented in pre-existing AD tool; m problematic to implement. All
code available at http://www.bcl.hamilton.ie/~qobi/ad2016-benchmarks/.


http://www.bcl.hamilton.ie/~qobi/ad2016-benchmarks/

Functional AD: A Usable System

DiffSharp is a functional automatic differentiation (AD) library in F# for the
multiplatform .NET framework.

let (y, dydx) = grad’ f x
https://diffsharp.github.io/DiffSharp/
https://github.com/DiffSharp/DiffSharp

DiffSharp-using library shows how nested AD allows succinct implementations of,
e.g., optimization of hyperparameters:
https://hypelib.github.io/Hype/


https://diffsharp.github.io/DiffSharp/
https://github.com/DiffSharp/DiffSharp
https://hypelib.github.io/Hype/

Atilim Giines Baydin



’ history of automatic differentiation and of backpropagation




’ history of automatic differentiation and of backpropagation
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’ history of automatic differentiation and of backpropagation

embellishments and variants (backpropagation
through time, RTRL, etc)

(Pearlmutter, 1994; Williams and Zipser, 1989; Simard et al., 1992)

backProp E f w x = V (w—=E(f x)) w
hessianVector £ x v = dd (r—V f (x+rxv)) 0
RTRL f w x E =
map (i—=(dd (w—E(f w x)) w (e 1))) (¢(dim w))
tangentProp E r £ x =
V (w—E(f x) + sgr(len(dd (0—f(r 0 x)) 0)))
W
hyperOpt E R trainl train2 =
argmin (h—
let w0 =
argmin (w—R h w 4+ sum(map (t—E w t) trainl))
in sum(map (t—E w0 t) train2)
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Method of Temporal Differences

tr—2

+)\Z|]y Hw) —y(t+ Lw)|? +

VEw ?

V(wellymw) =y +Lw) w2

letv=winV (w ||y(t;w) — y(t 4+ 1;v)[|*) w

TD())



Hooks

» Do you know what Checkpoint reverse is? Cross-country optimization?
» Did you know that computing 0"f(xy, ... ,x,)/0x; - - - Ox, is #P-complete?

» Have you heard of Tapenade? FadBad++? ADIFOR/ADIC? Adolc? StalinV?
ADiMat? DiftfSharp? autograd? Haskell ad? http://autodiff.org?


http://autodiff.org

Theoretical Frontier of AD

my idiosyncratic ravings

Preallocation

Not-so-simple derivatives (e.g., input vs feature space, natural gradient)
Storage reduction by clever re-computation

AD-enabled JIT Compiler

Nice A-Calculus Formulation (Correctness Proofs)

Convergent Loops — Detailed Pragmatics

Tropical Tangent/Co-Tangent Algebras for HMMs, etc
Efficient V(x — --- > --+)

Derivatives and Approximation Do Not Commute



Does Not Commute! Does Not Commute!

V
f——7f
approx approx
grad

— dt



Does Not Commute! Does Not Commute!

=Y. /i
F— = " DANGER WILL
“2 _ROBINSONM!™
A
approx approx '
grad
f —— df
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Conclusions

AD is ancient.

AD is in its infancy

“Manual” AD is bug-ridden and scales poorly.

Existing AD tools are fantastic when they match your needs.

Better (more general, faster) tools are on the horizon.



Conclusions

AD is ancient.

AD is in its infancy

“Manual” AD is bug-ridden and scales poorly.

Existing AD tools are fantastic when they match your needs.

Better (more general, faster) tools are on the horizon.
If we only had the resources to build them...
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