HI, I'M
TROY MOCLURE. ..

Automatic Differentiation:
History and Headroom

Barak A. Pearlmutter

Department of Computer Science, Maynooth University, Co. Kildare, Ireland

Prof Andrei A. Markov

Lev Semenovich Pontryagin P. S. Alexandrov Andrey N. Kolmogorov

The very first computer science PhD dissertation introduced forward
accumulation mode automatic differentiation.

The very first computer science PhD dissertation introduced forward
accumulation mode automatic differentiation.

Wengert (1964)

Robert Edwin Wengert. A simple automatic derivative evaluation program.
Communications of the ACM 7(8):463—4, Aug 1964.

A procedure for automatic evaluation of total/partial derivatives of arbitrary algebraic functions is
presented. The technique permits computation of numerical values of derivatives without
developing analytical expressions for the derivatives. The key to the method is the decomposition
of the given function, by introduction of intermediate variables, into a series of elementary
functional steps. A library of elementary function subroutines is provided for the automatic
evaluation and differentiation of these new variables. The final step in this process produces the
desired function’s derivative. The main feature of this approach is its simplicity. It can be used as a
quick-reaction tool where the derivation of analytical derivatives is laborious and also as a
debugging tool for programs which contain derivatives.

METHOD FOR
g, ORBIT
ILINEARIZATION

DETEBMINATION, AN

and R. Kalaba

R. Bellman, 1. Kagiwada

PREFARED FOR:
AIR FORCE PROJECT RAND

UNITED STATES

SANTA MONICA * CAUFORNIA/

R. E. Bellman, H. Kagiwada, and R. E. Kalaba (1965) Wengert’s numerical
method for partial derivatives, orbit determination and quasilinearization,
Communications of the ACM 8(4):231-2, April 1965,
doi:10.1145/363831.364886

In a recent article in the Communications of the ACM, R. Wengert suggested a technique
for machine evaluation of the partial derivatives of a function given in analytical form. In
solving nonlinear boundary-value problems using quasilinearization many partial
derivatives must be formed analytically and then evaluated numerically. Wengert’s
method appears very attractive from the programming viewpoint and permits the
treatment of large systems of differential equations which might not otherwise be
undertaken.

Automatic Differentiation:
a crash course

Automatic Differentiation (AD) mechanically calculates the
derivatives (Leibnitz, 1664; Newton, 1704) of functions
expressed as computer programs (Turing, 1936), at machine
precision (Konrad Zuse, 1941, Z3; Burks, Goldstine, and von
Neumann, 1946, §5.3, p14), and with complexity guarantees.

v

v

v

v

v

v

Automatic Differentiation

Derivative of f : R" — R™ is m X n “Jacobian matrix” J.
AD, forward accumulation mode: Jv (Wengert, 1964)

AD, reverse accumulation mode: J7v (Speelpenning, 1980)
About a zillion other modes and tricks

Big Iron FORTRAN-77 valve-age implementations

Vibrant field with regular workshops, conferences, updated community portal
(http://autodiff.org)

http://autodiff.org

What is AD?

Automatic Differentiation
aka Algorithmic Differentiation
aka Computational Differentiation

AD Type I: A calculus for efficiently calculating derivatives of functions
specified by a set of equations.

AD Type II: A way of transforming a computer program implementing a
numeric function to also efficiently calculate some derivatives.

AD Type III: A computer program which automatically transforms an input
computer program specifying a numeric function into one that also
efficiently calculates derivatives.

Forward AD

Symmetric Truncated
Taylor (1715) Expansion

L) (y) .
fata =L 1w et 0@

Symmetric Truncated
Taylor (1715) Expansion

L) (y) .
fata =L 1w et 0@

flx+ X€) =f(x) +f(x) Xe + O()

Symmetric Truncated
Taylor (1715) Expansion

L) (y) .
fata =L 1w et 0@
flx+ X€) =f(x) +f(x) Xe + O()

flx+ Fe+O(@) = F(x) +£(x) ¥e + O()

Symmetric Truncated
Taylor (1715) Expansion

L) (y) .

fata =L 1w et 0@
flx+ X€) =f(x) +f(x) Xe + O()

flx+ X e+ (’)(62)) = f(x) +f’(x)7€ + (’)(62)

flas X)) =fx) > f(x) X

flxp x)

f(x) > f'(x) x

Won’t anyone think of the ehildren types?

f:R>R

Won’t anyone think of the ehildren types?

Won’t anyone think of the ehildren types?

=
7

<—dual number (Clifford, 1873)

Won’t anyone think of the ehildren types?

=
7

<—dual number (Clifford, 1873)

flx> X)) =fx) > f(x) X

Won’t anyone think of the ehildren types?

FR—=R
x, ¥, f(x):R
(x> x): DR <—dual number (Clifford, 1873)
flx> X)) =fx)>f(x)x <type error!

Won’t anyone think of the ehildren types?

f:R-R
x, ¥, f(x):R
(x> x): DR +dual number (Clifford, 1873)
flx> X)) =fx)>f(x)x <type error!

7 : (R = R) — (DR — DR)

Tree X)) =fx) o f(x) ¥

Multifaceted Key to Forward AD!
Tfxe ¥) =fx) o f ()7

Multifaceted Key to Forward AD!
Tfxe ¥) =fx) o f ()7

Generalises beyond dual numbers (Clifford, 1873) and scalars:

f:R"— R" (multidimensional)
X, ¥ R (column vectors)
x> x : DR” (vector of dual numbers)
f(x) : R™" (Jacobian matrix, J)

7 : (R* - R") — (DR" — DR™) (Forward AD transform)

Multifaceted Key to Forward AD!
Tfxe ¥) =fx) o f ()7

Generalises beyond dual numbers (Clifford, 1873) and scalars:

f:R"— R" (multidimensional)
X, ¥ R (column vectors)
x> x : DR” (vector of dual numbers)
f(x) : R™" (Jacobian matrix, J)

7 : (R* - R") — (DR" — DR™) (Forward AD transform)

1. Compositional: 7(}” og) = 7]‘ o 7g
2. How to “lift” when f is a primop (elt of numeric basis)
3. What such “lifting” delivers when f is a defined function

Example: Application of TJtoa Primop

Vv:=sinu

Example: Application of TJtoa Primop

Vv:=sinu

Example: Application of TJtoa Primop

Vv:=sinu

Nid=

—\ . —\
v :z?sm u

:’ inline & destructure =

v>7::7sin(u>7)

Example: Application of TJtoa Primop

Vv:=sinu

Nid=

—\ . —\
v :z?sm u

:’ inline & destructure =

v>7::7sin(u>7)

-7 . -7
vi> v :=sinul> (cosu) * u

Example: Application of TJtoa Primop

Vv:=sinu

Nid=

—\ . —\
v :z?sm u

:’ inline & destructure =

v>7::7sin(u>7)

-7 . -7
vi> v :=sinul> (cosu) * u

V= sinu
e e
v = (cosu) * u

Simple Code

axb

C:
(v,w) := sincos u

Data Flow Graph

Data Flow Graph

Data Flow Graph

Transform Graph as Netlist, i.e., Code

AKA

» Forward Automatic Differentiation
» Forward Propagation

» Directional Derivative

» Push Forward

» Perturbation Analysis

Reverse AD

(aka backprop)

In the 1970s, tools for automated generation of adjoint codes (aka reverse
accumulation mode automatic differentiation, aka backpropagation) were
developed.

Type I: Geniuses transforming mathematical systems
(Gauss; Feynman (1939); Rozonoer and Pontryagin (1959))

Type II: Manual transformation of computational processes
(Bryson (1962); Werbos (1974); Le Cun (1985); Rumelhart, Hinton,
and Williams (1986))

Type III: Computer programs transform other computer programs
(Speelpenning (1980); LUSH; TAPENADE)

Type IV: First-class AD operators; closure
(STALINV; R°RS-AD; AUTOGRAD; DIFFSHARP)

Bert Speelpenning

' TUCDCS-R-80-1002 UILU-ENG 80 170:
C00-2383-0063

COMPILING FAST PARTIAL DERIVATIVES
OF FUNCTIONS GIVEN BY ALGORITHMS

by

Bert Speelpenning

lanuary 1980

e TTTT T=T o ssv~ vvo up LU uTal wWiltl LUNCCLLlONS glvel

by arbitrary algorithms.

What is needed is a system as sketched in Figure 1.

- ->
X

———l .’X ‘1
Af text text | Af?
FORTRAN »| JAKE === | poRTRAN

> - I 8'* I
-
y = f(x) < 5%

Figure 1. Use of Jake

uch a system will accept the text of an algorithm Af, embodying y=f(x)

1.2, Major Results of this Research

A full solution to the problem of compiling'fast gradients has beer
btained. For the problem of compiling fast Jacobians of arbitrary
shape a partial solution has been found. This thesis describes a method
aind its implementation capable of producing algorithms Af’ that compute
“he gradient of a funétion f(xl,...,xn) in an amount of time equivalent
0 a constant number of function evaluations independent of n. The space

‘equirements of the algorithm Af’ are modest.

specialization occurring within Computer Science. The separation of
Numerical Analysis from Software is virtually complete and few people
care to bridge the gap between the areas. In Numerical Analysis, the
notion of programs that produce programs rather than numbers is largely
absent. For most numerical analysts the FORTRAN compiler is completely
transparent, as if Created on the same day as the computer. There 1is
little awareness of language processing as a software writing tool in
the sense of the products we have come to expect from places 1like Bell
Labs. Notable exceptions include user languages for ﬂhysical modeling
and for statistical computations. Conversely, people involved in
writing software tools may have a tendency to write only such software
tools thét aid in the writing of other software tools, and although this
opens fgscinating avenues of auto-catalysis, the real usefulness of
these tools must ultimately come from application to outside areas.
Tools are means to an end, not ends in themselves. What seems required
is not merely cooperation between software people and numerical analysts
but efforts by people with a certain minimal understanding and interest
in both areas. The effort invested in such hetero-catalysis could pay

off very handsomely.

Differential Geometry

(digression)

Tangent Space

Tangent Space

Tangent Space

Cotangent Space

—
a Oy
linear
‘o, = o R

Gradients & Reverse AD
are Dual
to Perturbations & Forward AD

‘aed ="bel (0): ' — o - R
where we let
b=fa fa—p
boF)=Tflavd) JTf:a—p
(0,))=Tfa Tfia=(8x(B—"a)

Data Flow Graph

Data Flow Graph

Data Flow Graph

J
a e *
o— b «lf——
W
O

Data Flow Graph

Data Flow Graph

axb

sincos u

—~
=

=] =l E ol o

axb

-7 -7
ax b +bx*x a
sincos u

-7
wx U

-7

—V* U

axb

sincos u

QT

=] =l E ol o

=axbh

e -7
=ax b +bx a
:= sIncos u

-7
=Wk U

e
= —=V*x Uu

axb

sincos u

Generalise: All Types Are Manifolds

» can be disconnected (e.g., union type)
» components can have varying dimensionality (e.g., list R)

» components can be zero dimensional (e.g., bool, enum, Z), in
which case tangent space is zero dimensional (void)

%
primary J technical difficulty:

fanout

even today, our tools for high-performance numeric computations do not
support automatic differentiation as a first-class citizen.

even today, our tools for high-performance numeric computations do not
support automatic differentiation as a first-class citizen.

Dominant AD technology for high-performance systems: preprocessors.

even today, our tools for high-performance numeric computations do not
support automatic differentiation as a first-class citizen.

Dominant AD technology for high-performance systems: preprocessors.

» very hard to apply in a nested fashion
» caller-derives API impedes modularity
» brittle and idiosyncratic.

Rosenblatt Wightman

nesting

v

v

v

v

Uses of Nesting

Differential objective:
min |1 w) — will> + || (d/d0)f (6 w)] oy, —

Multilevel optimization (GANSs, learn-to-learn, etc. So hot!)
Optimizing game’s rules so rational players exhibit desired behaviour
Design optimization of “smart” devices, or devices involving PDEs
Hyperparameter optimization

Sensitivity/robustness analysis of processes involving AD

Generalise

. = .
Generalise 7, J to apply to all functions ...

7:(@%6)—%?%?)
T:(a—B) = (a—(Bx(B—"a))

... to all objects ...

o —

N
(07

-

—\
o — 6]

QF‘LQ

SIS

o —

Technicalities!

» Tangent space is usually isomorphic to “IR holes” in primal space, since R is
our only non-zero-dimensional primitive type.

But not always (function types).

» Cotangent space is usually isomorphic to tangent space.

But not always (function types).

» Due to issues related to this, parts of reverse mode must be “lazy” even if
primal & forward AD computations are “eager”.

Functions Diff. Geom. Handles

arithmetic functions

functions over discrete spaces

functions over disconnected manifolds of differing dimensionality
higher-order functions over concrete linear functions

higher-order functions like map and compose (o)

higher-order functions like numeric-iterate-to-fixedpoint
(Feynman, 1939; Pineda, 1987; Almeida, 1987)

%
higher-order functions like 7 and J

delicate dance

fielded systems with first-class AD:

slow

rough edges

headroom for acceleration

research prototype compiler

robabilistic-— probabilistic-
particle Bend]markgambdafcalculus prolog backprop
FF FR RF RR FF FR RF RR F R F R F Fv R
'LAD STALINV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 [] 1.0(
'ORTRAN ADIFOR 2.05 u u L] 5.44 u u u u u u L] 1551 335 u
TAPENADE 5.51 u u = 8.09 u u u u u u = 1497 597 6.8
. ADIC u u u [u u u u u] u [22775 5.61]
++ ADOL-C [[[[] [[[[[] [] [] [] 12.16 5.79 32.71
CpPAD [] [] [] [] [] [] [] [] [] [] [] [] 54.74] 29.2¢
FADBAD++ 93.32 u u u 60.67 u u u u u u u 132.31 46.01 60.71
L MLTON 78.13 11127 4595 32,57 | 11407 14628 1227 1058 | 129.11 114.88 848.45 507.21 95.20 L] 39.9(
OCAML 217.03 415.64 352.06 26138 | 291.26 407.67 4239 5021 | 249.40 499.43 | 1260.83 1542.47 | 202.01 L] 156.9:
SML/NJ 153.01 226.84 270.63 192.13 | 271.84 299.76 25.66 23.89 | 234.62 258.53 | 2505.59 1501.17 | 181.93 u 102.8¢
JASKELL GHC 209.44 [] [] [] 247.57 [] [] [] [] [] [] [u u u
CHEME ~ BIGLOO 627.78 85570 275.63 187.39 | 1004.85 1076.73 10524 89.23 | 983.12 1016.50 | 12832.92 7918.21 | 743.26 L] 360.07
CHICKEN 1453.06 2501.07 821.37 1360.00 | 2276.69 2964.02 22573 252.87 | 2324.54 3040.44 | 44891.04 24634.44 | 1626.73 [] 1125.2
GAMBIT 57894 879.39 356.47 260.98 | 958.73 1112.70 89.99 89.23 | 1033.46 1107.26 | 26077.48 14262.70 | 671.54 [] 379.63
IKARUS 266.54 38621 158.63 116.85 | 42475 527.57 4127 4234 | 49748 517.89 | 8474.57 4845.10 | 279.59 L] 165.1¢
LARCENY 964.18 1308.68 360.68 272.96 | 1565.53 1508.39 126.44 112.82 | 1658.27 1606.44 | 25411.62 14386.61 | 1203.34 L] 511.54
MIT SCHEME | 2025.23 3074.30 790.99 609.63 | 3501.21 3896.88 315.17 295.67 | 4130.88 3817.57 | 87772.39 49814.12 | 2446.33 [] 1113.0¢
MzC 1243.08 1944.00 740.31 557.45|2135.92 2434.05 194.49 187.53 | 2294.93 2346.13 | 57472.76 31784.38 | 1318.60 [] 754.47
MZSCHEME 1309.82 1926.77 71297 55528 | 2371.35 2690.64 224.61 219.29 | 2721.35 2625.21 | 60269.37 33135.06 | 1364.14 L] 772.1(
SCHEME->C 58220 743.00 270.83 208.38 | 910.19 913.66 8293 69.87 | 811.37 803.22 | 10605.32 5935.56 | 597.67 L] 280.93
SCMUTILS 4462.83 L] L] [] 7651.69 L] L] L] 7699.14 L] 83656.17 [] 5889.26 [] L]
STALIN 364.08 54773 399.39 295.00 | 543.68 690.64 6396 5293 | 956.47 1994.44 | 15048.42 16939.28 | 435.82 [] 281.27
Comparative ~ benchmark results for the particle and saddle examples (Siskind and Pearlmutter, 2008a), the

probabilistic-lambda-calculus and probabilistic-prolog examples (Siskind, 2008) and an implementation of backpropagation
in neural networks using AD. Column labels are for AD modes and nesting: F for forward, Fv for forward-vector aka stacked tangents, RF for reverse-over-
forward, etc. All run times normalized relative to a unit run time for STALINV on the corresponding example except that run times for backprop-Fv are
normalized relative to a unit run time for STALINV on backprop-F. Pre-existing AD tools are named in blue, others are custom implementations. Key:
m not implemented but could implement, including FORTRAN, C, and C++; m not implemented in pre-existing AD tool; m problematic to implement. All
code available at http://www.bcl.hamilton.ie/~qobi/ad2016-benchmarks/.

http://www.bcl.hamilton.ie/~qobi/ad2016-benchmarks/

robabilistic-— probabilistic-—
particle Bend]markgambdafcalculus prolog backprop
FF P REF FR R — F - R F Fv R
'LAD STALINV 1.00 ., . Il BT 1. 1.00 100 =m 1.0(
‘ORTRAN ADIFOR 2.05 u L] 1551 335 u
TAPENADE 5.51 u = 1497 597 6.8
, ADIC u u [22775 5.61]
++ ADOL-C [u L] 12.16 5.79 32.71
CpPAD [] [] [] [] [] [] [] [] [] [] [] [] 54.74 [] 29.24
FADBAD++ - u u u 132.31 46.01 60.71
L MLTON 32,57 114.88 848.45 507.21 9520 = 39.9(
OCAML 499.43 | 1260.83 1542.47 | 202.01] 156.9:
SML/NJ 258.53 | 2505.59 1501.17 | 181.93 [] 102.8¢
JASKELL GHC [] [] [] [] [[]
CHEME BIGLOO X . R3. 1016.50 | 12832.92 7918.21 | 743.26 L] 360.07
CHICKEN 76.69 2964.02 22573 252.87 | 2324.54 3040.44 | 44891.04 24634.44 | 1626.73] 1125.2¢
GAMBIT 958.73 111270 89.99 89.23 | 1033.46 1107.26 | 26077.48 14262.70 | 671.54] 379.6-
IKARUS 8474, 45.10 | 279.59 L] 165.1¢
LARCENY 4 62 86.61 | 1203.34 [] 511.5¢4
MIT SCHEME 77 49814.12 | 2446.33] 1113.0¢
MzC 574723 /84.38 | 1318.60] 754.47
MZSCHEME 602§0.37 35.06 | 1364.14 L] 772.1(
SCHEME->C 106f .56 | 597.67] 280.92
SCMUTILS R [] 7651.69 [] 7699.14 83656.17] 5889.26] []
STALIN 364.08 547.73 399.39 295.00 | 543.68 690.64 956.47 15048.42 16939.28 | 435.82] 281.27
Comparative ~ benchmark results for and Pearlmutter, 2008a), the

probabilistic-lambda-calculus a
in neural networks using AD. Column labels are for
forward, etc. All run times normalized relative to a
normalized relative to a unit run time for STALIN

2008) and an implementation of backpropagation
ard-vector aka stacked tangents, RF for reverse-over-
ple except that run times for backprop-Fv are
blue, others are custom implementations. Key:

m not implemented but could implement, including FORTRAN, C, and C++; m not implemented in pre-existing AD tool; m problematic to implement. All
code available at http://www.bcl.hamilton.ie/~qobi/ad2016-benchmarks/.

http://www.bcl.hamilton.ie/~qobi/ad2016-benchmarks/

Functional AD: A Usable System

DiffSharp is a functional automatic differentiation (AD) library in F# for the
multiplatform .NET framework.

let (y, dydx) = grad’ f x
https://diffsharp.github.io/DiffSharp/
https://github.com/DiffSharp/DiffSharp

DiffSharp-using library shows how nested AD allows succinct implementations of,
e.g., optimization of hyperparameters:
https://hypelib.github.io/Hype/

https://diffsharp.github.io/DiffSharp/
https://github.com/DiffSharp/DiffSharp
https://hypelib.github.io/Hype/

Atilim Giines Baydin

’ history of automatic differentiation and of backpropagation

’ history of automatic differentiation and of backpropagation

’ history of automatic differentiation and of backpropagation

embellishments and variants (backpropagation
through time, RTRL, etc)

’ history of automatic differentiation and of backpropagation

embellishments and variants (backpropagation
through time, RTRL, etc)

(Pearlmutter, 1994; Williams and Zipser, 1989; Simard et al., 1992)

backProp E f w x = V (w—=E(f x)) w
hessianVector £ x v = dd (r—V f (x+rxv)) 0
RTRL f w x E =
map (i—=(dd (w—E(f w x)) w (e 1))) (¢(dim w))
tangentProp E r £ x =
V (w—E(f x) + sgr(len(dd (0—f(r 0 x)) 0)))
W
hyperOpt E R trainl train2 =
argmin (h—
let w0 =
argmin (w—R h w 4+ sum(map (t—E w t) trainl))
in sum(map (t—E w0 t) train2)

Method of Temporal Differences

tr—2

+)\Z|]y Hw) —y(t+ Lw)|? +

TD())

Method of Temporal Differences

tr—2

+)\Z|]y Hw) —y(t+ Lw)|? +

VEw ?

TD())

Method of Temporal Differences

tr—2

+)\Z|]y Lw) —y(t+ 1w +

VEw ?

V(wellymw) =y +Lw) w2

TD())

Method of Temporal Differences

tr—2

+)\Z|]y Lw) —y(t+ 1w +

VEw ?

V(wellymw) =y +Lw) w2

TD())

Method of Temporal Differences

tr—2

+)\Z|]y Hw) —y(t+ Lw)|? +

VEw ?

V(wellymw) =y +Lw) w2

letv=winV (w ||y(t;w) — y(t 4+ 1;v)[|*) w

TD())

Hooks

» Do you know what Checkpoint reverse is? Cross-country optimization?
» Did you know that computing 0"f(xy, ... ,x,)/0x; - - - Ox, is #P-complete?

» Have you heard of Tapenade? FadBad++? ADIFOR/ADIC? Adolc? StalinV?
ADiMat? DiftfSharp? autograd? Haskell ad? http://autodiff.org?

http://autodiff.org

Theoretical Frontier of AD

my idiosyncratic ravings

Preallocation

Not-so-simple derivatives (e.g., input vs feature space, natural gradient)
Storage reduction by clever re-computation

AD-enabled JIT Compiler

Nice A-Calculus Formulation (Correctness Proofs)

Convergent Loops — Detailed Pragmatics

Tropical Tangent/Co-Tangent Algebras for HMMs, etc
Efficient V(x — --- > --+)

Derivatives and Approximation Do Not Commute

Does Not Commute! Does Not Commute!

V
f——7f
approx approx
grad

— dt

Does Not Commute! Does Not Commute!

=Y. /i
F— = " DANGER WILL
“2 _ROBINSONM!™
A
approx approx '
grad
f —— df

v

v

v

v

v

Conclusions

AD is ancient.

AD is in its infancy

“Manual” AD is bug-ridden and scales poorly.

Existing AD tools are fantastic when they match your needs.

Better (more general, faster) tools are on the horizon.

Conclusions

AD is ancient.

AD is in its infancy

“Manual” AD is bug-ridden and scales poorly.

Existing AD tools are fantastic when they match your needs.

Better (more general, faster) tools are on the horizon.
If we only had the resources to build them...

References I

Luis B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In Maureen Caudill and Charles Butler, editors, IEEE First International
Conference on Neural Networks, volume 2, pages 609-18, San Diego, CA, June 21-24 1987.

Atilim Giines Baydin and Barak A. Pearlmutter. Automatic differentiation of algorithms for
machine learning. Technical Report arXiv:1404.7456, April 28 2014. Also in Proceedings of the
AutoML Workshop at the International Conference on Machine Learning (ICML), Beijing,
China, June 21-26, 2014.

Atilim Giineg Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Technical Report arXiv:1502.05767,
2015a.

Atillim Giines Baydin, Barak A. Pearlmutter, and Jeffrey Mark Siskind. DiffSharp: Automatic
differentiation library. Technical Report arXiv:1511.07727, 2015b.

Atilim Giines Baydin, Barak A. Pearlmutter, and Jeffrey Mark Siskind. DiffSharp: An AD library
for .NET languages. Technical Report arXiv:1611.03423, September 2016. Extended abstract
presented at the AD 2016 Conference, Oxford UK.

References 11

R. E. Bellman, H. Kagiwada, and R. E. Kalaba. Wengert’s numerical method for partial derivatives,
orbit determination and quasilinearization. Comm. of the ACM, 8(4):231-2, April 1965. doi:
10.1145/363831.364886.

Arthur E. Bryson, Jr. A steepest ascent method for solving optimum programming problems.
Journal of Applied Mechanics, 29(2):247, 1962.

Arthur W. Burks, Herman H. Goldstine, and John von Neumann. Preliminary discussion of the
logical design of an electronic computing instrument. Technical report, Report to the U.S. Army
Ordnance Department, 1946. URL https://library.ias.edu/files/Prelim_Disc_Logical_Design.pdf.

William Kingdon Clifford. Preliminary sketch of bi-quaternions. Proceedings of the London
Mathematical Society, 4:381-95, 1873.

Richard Phillips Feynman. Forces in molecules. Physical Review, 56(4):340-3, August 1939. doi:
10.1103/PhysRev.56.340.

Yann Le Cun. Une procédure d’apprentissage pour réseau a seuil assymétrique. In Cognitiva 85: A
la Frontiére de I'Intelligence Artificielle des Sciences de la Connaissance des Neurosciences,
pages 599-604, Paris 1985, 1985. CESTA, Paris.

https://library.ias.edu/files/Prelim_Disc_Logical_Design.pdf

References II1

Gottfried Wilhelm Leibnitz. A new method for maxima and minima as well as tangents, which is
impeded neither by fractional nor by irrational quantities, and a remarkable type of calculus for
this. Acta Eruditorum, 1664.

Isaac Newton. De quadratura curvarum, 1704. In Optiks, 1704 edition. Appendix.

Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147-60,
1994. doi: 10.1162/neco.1994.6.1.147.

Barak A. Pearlmutter and Jeffrey Mark Siskind. Lazy multivariate higher-order forward-mode AD.
In Proc of the 2007 Symposium on Principles of Programming Languages, pages 155-60, Nice,
France, January 2007. doi: 10.1145/1190215.1190242.

Fernando Pineda. Generalization of back-propagation to recurrent neural networks. Physical
Review Letters, 19(59):2229-32, 1987.

L. I. Rozonoer and Lev Semenovich Pontryagin. Maximum principle in the theory of optimal
systems I. Automation Remote Control, 20:1288-302, 1959.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, 323:533-6, 1986.

References IV

Patrice Simard, Bernard Victorri, Yann LeCun, and John Denker. Tangent prop—a formalism for
specifying selected invariances in an adaptive network. In Advances in Neural Information
Processing Systems 4. Morgan Kaufmann, 1992.

Jeffrey Mark Siskind. AD for probabilistic programming. NIPS 2008 workshop on Probabilistic
Programming: Universal Languages and Inference; systems; and applications, 2008.

Jeffrey Mark Siskind and Barak A. Pearlmutter. First-class nonstandard interpretations by opening
closures. In Proceedings of the 2007 Symposium on Principles of Programming Languages,
pages 71-6, Nice, France, January 2007. doi: 10.1145/1190216.1190230.

Jeffrey Mark Siskind and Barak A. Pearlmutter. Using polyvariant union-free flow analysis to
compile a higher-order functional-programming language with a first-class derivative operator to
efficient Fortran-like code. Technical Report TR-ECE-08-01, School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN, USA, January 2008a. URL
http://docs.lib.purdue.edu/ecetr/367.

http://docs.lib.purdue.edu/ecetr/367

References V

Jeffrey Mark Siskind and Barak A. Pearlmutter. Putting the automatic back into AD: Part I, What’s
wrong. Technical Report TR-ECE-08-02, School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN, USA, January 2008b. URL
http://docs.lib.purdue.edu/ecetr/368.

Jeffrey Mark Siskind and Barak A. Pearlmutter. Binomial checkpointing for arbitrary programs
with no user annotation. Technical Report arXiv:1611.03410, September 2016a. Extended
abstract presented at the AD 2016 Conference, Oxford UK.

Jeffrey Mark Siskind and Barak A. Pearlmutter. Efficient implementation of a higher-order
language with built-in AD. Technical Report arXiv:1611.03146, September 2016b. Extended
abstract presented at the AD 2016 Conference, Oxford UK.

Bert Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Algorithms. PhD
thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, January
1980.

Brook Taylor. Methodus Incrementorum Directa et Inversa. London, 1715.

http://docs.lib.purdue.edu/ecetr/368

References VI

A. M. Turing. On computable numbers with an application to the entscheidungsproblem. Proc.
London Math. Soc., 2(42):230-65, December 1936. Correction, ibid, 2(43) 544-546 (jan 1937).

Robert Edwin Wengert. A simple automatic derivative evaluation program. Comm. of the ACM, 7
(8):463—4, August 1964. doi: 10.1145/355586.364791.

Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD thesis, Harvard University, 1974.

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270-80, 1989.

